High-temperature series for $S=1 / 2$ with anisotropic exchange

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9105
(http://iopscience.iop.org/0305-4470/9/1/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:11

Please note that terms and conditions apply.

準-temperature series for $S=\frac{1}{2}$ with anisotropic exchange

T de Neef and J P A M Hijmans
Department of Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

Received 9 July 1975

Abstract. For the nearest-neighbour $S=\frac{1}{2}$ Hamiltonian

$$
\mathscr{H}=-2 \sum_{\langle i j\rangle}\left[J_{\perp}\left(S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{Y}\right)+J_{\|} S_{i}^{z} S_{j}^{z}\right]+H \sum_{j} S_{j}^{z}
$$

the expansion for the logarithm of the partition function is calculated as

$$
\ln (Z)=\sum_{i j} a\left(J_{\perp}, J_{\|}\right)_{i j} \beta^{i} H^{j},
$$

where $\beta=1 / k T$. It is shown that from the zero-field coefficients $a\left(J_{1}, J_{\|}\right)_{i_{0}}$, the corresponding series for the more general Hamiltonian

$$
\mathscr{H}^{\prime}=-2 \sum_{\langle i j\rangle}\left(J_{x} S_{i}^{x} S_{j}^{x}+J_{y} S_{i}^{y} S_{j}^{y}+J_{z} S_{i}^{z} S_{j}^{z}\right)
$$

can be calculated up to a certain maximum order in β. This maximum order depends on the topology of the lattice. For open cubic lattices the coefficients $a_{i j}(i \leqslant 9, j \leqslant 8)$ have been calculated, while the series for the more general Hamiltonian is determined up to and including β^{9}, thereby not reaching the limit imposed by these lattices.

1. Introduction

High-temperature series expansions of thermodynamical functions have been of great bep in theoretical as well as in experimental magnetism. A considerable amount of abour is still devoted to the calculation of further terms in known series or the evaluation of completely new series. It seems that most attention has been paid to Hamiltonians mith a model interaction (Ising, $X Y$ and Heisenberg; spin dimensionality $D=1,2$ and 3 resectively, mainly on lattices with nearest-neighbour interactions only. In practice however, many magnetic compounds do not behave like such a model system and experimental physicicists are confronted with a lack of data concerning the series for more general Hamiltonians. This may imply interactions of different strength or a more Eneral form of the exchange tensor.

We wish to turn our attention to this last case and write the Hamiltonian in the axial

$$
\begin{equation*}
\mathscr{H}=-2 \sum_{\langle i j\rangle}\left[J_{\perp}\left(S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right)+J_{\|} S_{i}^{z} S_{j}^{z}\right]+H \sum_{i} S_{i}^{z} \tag{1}
\end{equation*}
$$

with $S=\frac{1}{2}$. The summation runs over all pairs of nearest neighbours and each pair is counted once.

In order to calculate the series expansion for the logarithm of the partition function

$$
\ln (Z(\beta, H))=\sum_{i j} \beta^{i} H^{j} \sum_{k=0}^{i} a_{k}^{i j} J_{\perp}^{k} J_{\|}^{i-k}
$$

with $\beta=1 / k T$, we employed the finite cluster method (Domb 1960, Rushbrooke 1964. Rushbrooke et al 1974), for a set of ratios $J_{\perp} / J_{\|}$.

The experimental interest of our laboratory in the magnetic behaviour of certain insulators motivated us to see whether this same technique could be applied to the more general Hamiltonian

$$
\begin{equation*}
\mathscr{H}^{\prime}=-2 \sum_{\langle i j\rangle}\left(J_{x} S_{i}^{x} S_{j}^{x}+J_{y} S_{i}^{y} S_{j}^{y}+J_{z} S_{i}^{z} S_{j}^{z}\right)+H \sum_{i} S_{i}^{z} \tag{3}
\end{equation*}
$$

for which the series would read

$$
\begin{equation*}
\ln \left(Z^{\prime}(\beta, H)\right)=\sum_{i j} \beta^{i} H^{j} \sum_{k=0}^{i} \sum_{l=0}^{i-k} \gamma_{k l}^{i j} J_{x}^{k} J_{y}^{l} J_{z}^{i-k-l} . \tag{4}
\end{equation*}
$$

It is obvious that the extra labour involved is considerable, partly due to the higher number of $\gamma_{k i}^{i j}$ but mainly due to the fact that $T_{z}\left(=\Sigma_{i} S_{i}^{z}\right)$ is no longer a good quantum number in (3). This reduces the symmetry of \mathscr{H} (as compared to (1)) and results in much larger matrices that have to be handled.

It was found however, that the coefficients in the series for the zero-field specific heat (or equivalently the $\gamma_{k k}^{i 0}$) for a Hamiltonian like (3) are related to the $\alpha_{k}^{i 0}$ from the axial case (1).

A unique correspondence between them holds up to a certain order in β, which depends on the type of lattice.

2. Method of calculation

The most powerful method of calculating the coefficients in a series expansion of $\ln (Z)$ for an $S=\frac{1}{2}$ Hamiltonian like (1) is probably the finite cluster method, introduced by Domb (1960). In order to find the series for an infinite lattice with this technique, the series for a number of relatively small clusters of spins are calculated and combined ina suitable way. Details of the different steps in this process are clearly described elsewhere (see, for instance, Baker et al 1967b, Rushbrooke et al 1974) and tables that describe the way in which the clusters should be combined have been published by Baker et al (1967a). Here we wish to emphasize only one point, concerning the arithmetic.

The coefficients in the series for any particular cluster are obtained from $\operatorname{Tr}\left(\mathscr{H}^{i} T \boldsymbol{T}\right)$ for the corresponding Hamiltonian. When dealing with an isotropic interaction tensor ($J_{\perp}=J_{11}$), this is usually done through repeated multiplication of the matrix representation of \mathscr{H} on any suitable set of basis functions. For $S=\frac{1}{2}$ the basis can be chosen such that this matrix contains only integer numbers and computer calculations are then errorless. In our case of anisotropic exchange, $\operatorname{Tr}\left(\mathscr{H}^{i} T_{z}^{j}\right)$ should be solved for a number of ratios $J_{1} / J_{\|}$. Although it is still possible to choose $J_{1} / J_{\|}$as an integer, thereby obtaining a matrix that contains only integers also, we found this method too cumbersome and proceeded differently.

Instead of matrix multiplications to obtain $\operatorname{Tr}\left(\mathscr{H}^{i} T_{z}^{j}\right)$, we calculated the eigenvalues of \mathscr{H} and computed the traces from these. Since T_{z} is a good quantum number, the eigenvalues can be labelled according to the eigenvalues of T_{z} and no difficulties arise. This
ge up introduces some rounding errors but on the other hand the computations are las time consuming.
Solving $\ln (Z)$ for given J_{\perp} and $J_{\|}$results in a series

$$
\begin{equation*}
\ln (Z(\beta, H))=\sum_{i \geqslant 0} \sum_{j \geqslant i} a_{i j}\left(J_{-}, J_{\|}\right) \beta^{i} H^{j} . \tag{5}
\end{equation*}
$$

Issould be noted that in this expression the coefficients $a_{i j}$ are not known as functions of J_{1} and $J_{\|}$. Their numerical values are known only for certain combinations of the two perameters. Since each coefficient $a_{i j}\left(J_{1}, J_{\|}\right)$in (5) can be expressed in a homogeneous polynomial of degree i in J_{\perp} and $J_{\|}$,

$$
\begin{equation*}
a_{i j}\left(J_{\perp}, J_{\|}\right)=\sum_{k=0}^{i} \alpha_{k}^{i j} J_{\perp}^{k} J_{\|}^{i-k} \tag{6}
\end{equation*}
$$

the final coefficients $\alpha_{k}^{i j}$ can be solved by comparing the numerical values of $a_{i j}\left(J_{\perp}, J_{\| \mid}\right)$in (1) for different sets of J_{\perp} and $J_{\| l}$. As mentioned, the $a_{i j}\left(J_{\perp}, J_{\|}\right)$are subject to rounding trors and an averaging is therefore desirable. We solved (5) for 14 different ratios $J_{\perp} / J_{\|}$ and this averaging was accomplished by requiring the squares sum

$$
\begin{equation*}
F_{i j}=\sum_{J_{\perp}, J_{\|}}\left(\sum_{k=0}^{i} a_{k}^{i j} J_{\perp}^{k} J_{\|}^{i-k}-a_{i j}\left(J_{\perp}, J_{\|}\right)\right)^{2} \tag{7}
\end{equation*}
$$

10 reach a minimum for the $\alpha_{k}^{i j}$ to be determined. The $\alpha_{k}^{i j}$, found in this way, are not erorless but the minimum value of $F_{i j}$ can be used to indicate their reliability. Some of the ijice known exactly from the series for model Hamiltonians (Ising, XY). These may be substituted beforehand. The known series coefficients for the Heisenberg model mpose an additional condition of the coefficients α, namely that their sum is correct. After solution of (7) the difference between their sum and the correct sum is distributed among the $\alpha_{k}^{i j}$ with a weight according to their respective uncertainties. In this way the series or the model Hamiltonians (Ising, $X Y$ and Heisenberg) are correctly represented by the general expression (2).
We will now turn to the possibility of calculating the series for the general Hamiltonian (3). In order to find the expressions for the coefficients $b_{i j}\left(J_{x}, J_{y}, J_{z}\right)$ in (4), we first define their polynomial expression in accordance with (6) as

$$
\begin{equation*}
b_{i}\left(J_{x}, J_{y}, J_{z}\right)=\sum_{k=0}^{i} \sum_{l=0}^{i-k} \gamma_{k l}^{i j} J_{x}^{k} J_{y}^{l} J_{z}^{i-k-l} . \tag{8}
\end{equation*}
$$

Ona aim is to establish a relation between $\gamma_{k l}^{i j}$ and $\alpha_{m}^{i j}$. Since $b_{i j}\left(J_{\perp}, J_{1}, J_{\|}\right)=a_{i j}\left(J_{\perp}, J_{\|}\right)$ this is radily done by the substitution $J_{x}=J_{y}=J_{\perp}, J_{z}=J_{\|}$in (8) and comparing the roult with (6). This shows that for any i and j

$$
\begin{equation*}
\alpha_{k}^{i j}=\sum_{l=0}^{k} \gamma_{i k-l}^{i j} \quad(k=0,1, \ldots i) . \tag{9}
\end{equation*}
$$

Foriand jfixed, the number of unknowns on the right-hand side is $\frac{1}{2}(i+1)(i+2)$, whereas the number of coefficients on the left-hand side is just $i+1$. In general it is thus not pasible to determine the values for all $\gamma_{k l}^{i j}$ for given i and j from the i different $\alpha_{m}^{i j}$. Howere, certain symmetries may be present and these are most helpful when $j=0$ and $H=0$. In that case no external preferred direction is imposed on the Hamiltonian
and \mathscr{H}^{\prime} is invariant under any permutation of J_{x}, J_{y} and J_{z}. For the coefficients sio this implies the relations

$$
\begin{equation*}
\gamma_{k l}^{i 0}=\gamma_{l k}^{i 0}=\gamma_{i-k l}^{i 0}=\gamma_{l i-k}^{i 0}=\gamma_{k i-l}^{i 0}=\gamma_{i-l k}^{i 0} \tag{10}
\end{equation*}
$$

It is obvious that this symmetry reduces the number of coefficients $\gamma_{k l}^{i 0}$ quite drastically. To show the effect on the calculation we will consider the coefficients in β^{3} in more detail For the general Hamiltonian (3) we find, grouping different terms in accordance with (10),

$$
\begin{align*}
b_{30}\left(J_{x}, J_{y}, J_{z}\right) & =\gamma_{00}^{30}\left(J_{x}^{3}+J_{y}^{3}+J_{z}^{3}\right)+\gamma_{01}^{30}\left(J_{x} J_{y}^{2}+J_{y} J_{z}^{2}+J_{z} J_{x}^{2}+J_{x}^{2} J_{y}+J_{y}^{2} J_{z}+J_{z}^{2} J_{x}\right) \\
& +\gamma_{11}^{30} J_{x} J_{y} J_{z} \tag{II}
\end{align*}
$$

and for the axial case

$$
\begin{equation*}
a_{30}\left(J_{\perp}, J_{\|}\right)=x_{0}^{30} J_{\|}^{3}+x_{1}^{30} J_{\|}^{2} J_{\perp}+x_{2}^{30} J_{\|} J_{1}^{2}+\alpha_{3}^{30} J_{\perp}^{3} \tag{12}
\end{equation*}
$$

Substitution of $J_{x}=J_{y}=J_{1}$ and $J_{z}=J_{\|}$in (11) and comparison of (11) and (12) then leads to the set of equations (9), which read

$$
\begin{align*}
& \alpha_{0}^{30}=\gamma_{00}^{30} \\
& \alpha_{1}^{30}=2 \gamma_{11}^{30} \\
& \alpha_{2}^{30}=2 \gamma_{01}^{30}+\gamma_{11}^{30} \tag{13}\\
& \alpha_{3}^{30}=2 \gamma_{00}^{30}+2 \gamma_{01}^{30} .
\end{align*}
$$

The three different $\gamma_{k l}^{30}$ are thus uniquely determined as

$$
\begin{align*}
& \gamma_{00}^{30}=\alpha_{0}^{30} \\
& \gamma_{01}^{30}=\frac{1}{2} \alpha_{1}^{30} \tag{14}\\
& \gamma_{11}^{30}=\alpha_{2}^{30}-\alpha_{1}^{30}
\end{align*}
$$

and besides, it is clear that a relation must exist between the four α_{m}^{30}. For higher terms the corresponding set of equations becomes still undetermined and no unique solution can be found. In fact, for $i=4$ one would end up with five equations and six unknowis. However, a number of the coefficients $\gamma_{k l}^{i 0}$ can be neglected since their value must be zero. In the above example for instance, γ_{01}^{30} must vanish since in β^{3} the only graphs with a non-vanshing trace are

$$
\equiv \text { and } \triangle \text {. }
$$

But the first gives rise to γ_{11}^{30} since any other combination would result in a vanishing trace, and the second graph contributes only to γ_{00}^{30}. (This explains the predicted extra relation between the four α_{m}^{30}.)

A systematic examination of all graphs yields some general rules concerning the indices i, k and l in $\gamma_{k l}^{i 0}$. We may state quite generally that no graphs exist that contribure to $\gamma_{01}^{i 0}$ with l odd. Other restrictions may be present that depend on the type of latice for which the series is calculated. For all open cubic lattices (no odd-numbered rings) for instance, examination of the graphs shows that i, j and k should be all even or all odd. Conditions, imposed in this way on the coefficients, affect both the number of equations and the number of unknowns in (9). We did not study this problem in great detail for all lattices, but a first examination reveals that the set is still solvable to order β^{7} for any lattice. We conclude therefore that this method is rather generally applicable.

Wough its use is primarily of experimental interest. For theoretical analysis of series, Ref β^{7} is quite low. On the open lattices, where solutions can be found to order β^{11}, the stricion is less severe.
Attempts to apply the same method to the series of the susceptibility ($\gamma_{k l}^{i 2}$) fail already tuder β^{4}, due to the fact that \mathscr{H}^{\prime} is no longer invariant under all permutations of J_{x}, J_{y} ald:

R Results

Tirseries expansion of $\ln (Z)$ was calculated on four open lattices: the linear chain (one sensional), square (two dimensional), simple cubic (three dimensional) and bodywhted cubic (three dimensional). The polynomials representing the coefficients Wd $\left.J_{5}, J_{y}, J_{z}\right)$ and $a_{i}\left(J_{1}, J_{i j}\right)(j>0)$ are expressed as integer ratios in table 1. The table is finded in sections, corresponding to the power of H in (2). Each section contains seven wimns, corresponding respectively to : the order of β, an identification of the non-zero adficients $\alpha_{m}^{i j}$ or $\gamma_{k l}^{i 0}$, a multiplication factor and the information for the four lattice mas. For the terms in H^{0} the identification of the $\gamma_{k l}^{i 0}$ is a set of three numbers listing the mpective powers of J_{x}, J_{y} and J_{z}. It should be remembered that, as in (11), permutation dite J_{x}, J_{y} and J_{z} is implicit. Thus $\{1,1,3\}$ for example corresponds to

$$
\left(J_{x} J_{y} J_{z}^{3}+J_{x} J_{y}^{3} J_{z}+J_{x}^{3} J_{y} J_{z}\right)
$$

$\mathbb{m}_{0}\{2,2,2\}$ to $J_{x}^{2} J_{y}^{2} J_{z}^{2}$. The other sections of the table compile information for the axially smmerric Hamiltonian (1). In that case no permutations are allowed and $(2,4)$ for ample should thus be read as $\left(J_{1}^{2} J_{\|}^{4}\right)$. Each of the numbers in the last four columns must be multiplied by the appropriate constant in the third column. As was mentioned, coefficients are not free from rounding errors. The minimum squares sum resulting fonthe least-squares fit (7) in the determination of the $\alpha_{k}^{i j}$, is used to estimate the accuracy Whe numbers. This is expressed by asterisks, superscripted to the numbers in the last burcolumns of the table. If one asterisk is attached, a deviation of ± 5 is possible. For moasterisks a maximum error of ± 50 may be present. Care was taken to ensure the minet result for Heisenberg interaction ($J_{x}=J_{y}=J_{z}$) (Rushbrooke et al 1974), for ling exchange ($J_{x}=J_{y}=0$) (Domb 1974) and for the $X Y$ model $\left(J_{x}=J_{y}, J_{z}=0\right)$ Bett 1974) for terms in H^{0} : Lee (1971) for terms in H^{2}. Previous results on the axial Hamiltonian were used as a check also. Especially the result of Obokata et al (1967) for Lesusceptibility of (1) on the linear chain, square and simple cubic lattices, and the work Wliod and Dalton (1972). These checks were made by comparing the series for the sexific heat in zero field:

$$
\begin{equation*}
C=\sum_{i \geqslant 2} i(i-1) a_{i 0} \beta^{i} \tag{15}
\end{equation*}
$$

od or the susceptibility in zero field,

$$
\begin{equation*}
\chi=\sum_{i \geqslant 2} 2 a_{i 2} \beta^{i-1} \tag{16}
\end{equation*}
$$

For the Heisenberg Hamiltonian, the tables of Rushbrooke et al (1974) offered the
Masbility of a direct comparison for the expansion of $\ln (Z)$.
Table 1. Coefficients in the series expansion of $\ln (Z(\beta, H))$ for four latices. The series is written as
and the $a_{i j}$ are tabulated. For $j=0$, they are expressed as a function of J_{x}, J_{y} and J_{2}, according to the Hamiltonian (3) of the text. For $j \neq 0$, their depend-
ence on J_{1} and $J_{i l}$ is given for the axial Hamiltonian (1). The correct use of the table is explained in the text.

Terms in $\ln \left(Z^{\prime}(\beta, 0)\right)$							Terms in $H^{\mathbf{2}}$ in $\ln (Z(\beta, H)$)						
	$\left\{J_{x}^{k}, J_{y}^{1}, J_{2}^{m}\right\}$	Factor	Chain	Square	Cubic	BCC		($\left.J_{1}^{k} J_{* 1}^{\prime}\right)$	Factor	Chain	Square	Cubic	BCC
β°	$\{0,0,0\}$	$\ln (2)$	1	1	1	1	β^{2}						
β^{2}	$\{0,0,2\}$	$1 / 2^{2} 2$!	1	2	3	4	β^{3}	$(0,0)$ $(0,1)$	$1 / 2^{2} 2!$ $6 / 2^{3} 3!$	1	2		1
β^{3} β^{4}	$\{1,1,1\}$	$6 / 2^{3} 3$!	- 1	-2	3 -3	-4	β^{4}	$(0,1)$ $(0,2)$	$6 / 2^{3} 3!$ $24 / 2^{4} 4!$	1	2	15 15	4 28
β^{4}	$\{0,0,4\}$	$2 / 2^{4} 4$!	-1	10	-33	-4 140	β^{4}	$(0,2)$ $(2,0)$	24/24!	1 -1	6 -2	${ }_{-3}{ }^{15}$	28 -4
	\{0, 2, 2\}		--4	-24	-60	-112	β^{5}	$(0,3)$	80/2 ${ }^{5} 5$!	1	- 26	- 111	-4 -292
β^{5} β^{6}	$\{1,1,3\}$ $\{0,0,6\}$	$40 / 2^{5} 5$! $8 / 2^{6} 6!$	3	10 64	21 1626	12		$(2,1)$		-3	-18	-45	-84
	$\{0,2,4\}$		18	-108	-810	-7560	$\beta{ }^{6}$	$(0,4)$	240/2 ${ }^{\text {6 }}$!	1	138	1059	3916
	\{2, 2, 2\}		-51	846	4131	12756		$(4,0)$		-2	-132	-606	-1640
β^{7}	$\{1,1,5\}$	16/2 ${ }^{7} 7$!	-238	224	-4662	- 19600	β^{7}	$(0,5)$	672/2 ${ }^{7} 7$!	6 1			24
	$\{1,3,3\}$		-679	- 5418	-16569	13412		$(2,3)$	$672 / 27$	5	902 -1110	12603 -9345	65524 -36100
β^{8}	$\{0,0,8\}$	$16 / 2^{8} 8$!	-17	4250	370641	5580220		$(4,1)$		15	350	1425	- 2100
	$\{0,2,6\}$		-272	2306*	-313096**	-3256052**	β^{8}	$(0,6)$	$896 / 2^{8} 8$!	2	13752	354450	
	$\{0,4,4\}$		-612	- 1212*	-16012**	-1021032**		$(2,4)$		-6	-20388	- 323010	-1762294**
β^{9}	$\{2,2,4\}$ $\{1,1,7\}$		5424 2790	11536 -30056	-216246	2536608		$(4,2)$		-225	8286	72405	197532*
β	$\{1,1,7\}$ $\{1,3,5\}$	$64 / 2^{9} 9$!	2790 15480	-30056	$\begin{gathered} -453634^{*} \\ 1467052^{*} \end{gathered}$	$-13922881^{* *}$		$(6,0)$		-170	-916	-4806	-8792*
			27840	864970*	3870492*	-13809423**	β^{9}	$(0,7)$	$4608 / 2^{9} 9$!	1	60566	2904051	29907112
						-13809423**		(2,5)		-63	- 105630	-3139017	-24166230*
								$(4,3)$		-273	54838	946617	4049008*
								(6, 1)		175	-11396	- 109725	-247688*

Table 1.-continued.

Acknowledgments

The authors kindly acknowledge stimulating discussions with Professor P van dea Leeden, Professor C Domb and Dr W J M de Jonge.

Note added in proof. Very recently van Dongen et al (1975) obtained results for the series expansion (4), for the linear chain. Their technique is very similar to the method described here. Actually they were able to find the $\gamma_{k l}^{i 0}$ from $\alpha_{0}^{i 0}$ and $\alpha_{i}^{i 0}$, known from the exact solutions for the Ising and $X Y$ chain respectively. Our results are in agreemens with theirs.

References

Baker G A. Jr, Gilbert H E, Eve J and Rushbrooke G S 1967a Brookhaven National Laboratory Repar: BNL 50053

- 1967b Phys. Rev. 164 800-17

Betts D D 1974 Phase Transitions and Critical Phenomena, vol 3 eds C Domb and M S Green (Londor: Academic Press) pp 569-652
Domb C 1960 Phil. Mag. Suppl. 9

- 1974 Phase Transitions and Critical Phenomena, vol 3 eds C Domb and M S Green (London: Acadeuik Press) pp 357-484
van Dongen E J, Capel H W and Siskens Th J 1975 Physica A 79 617-33
Lee M H 1971 J. Math. Phys. 12 61-9
Obokata T, Ono I and Oguchi T 1967 J. Phys. Soc. Japan 23 516-21
Rushbrooke G S 1964 J. Maih. Phys. 5 1106-16
Rushbrooke G S. Baker G A. Jr and Wood P I 1974 Phase Transitions and Critical Phenomena, vol 3 eds C Domb and M S Green (London: Academic Press) pp 275-356
Wood D W and Dalton N W 1972 J. Phys. C: Solid St. Phys. 5 1675-86.

