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Abstract. For the nearest-neighbour S = 4 Hamiltonian 

R = -2 2 [J,(sfs;:+spy)+J,,s~s~]+HCS~ 
( i j )  j 

the expansion for the logarithm of the partition function is calculated as 

In(z) = C U ( J , , J , ~ ) ~ ~ $ H ~ ,  
ij 

where f j  = l/kT. It is shown that from the zero-field coefficients u(J,, J 
ing series for the more general Hamiltonian 

the correspond- 

JIP' = -2  1 (J$;S~+J,SySJ+J,S:S~) 
(ij) 

can be calculated up to a certain maximum order in f l .  This maximum order depends on the 
topology of the lattice. For open cubic lattices the coefficients a,(i < 9, j C 8) have been 
calculated, while the series for the more general Hamiltonian is determined up to and 
including fj9, thereby not reaching the limit imposed by these lattices. 

&$-temperature series expansions of thermodynamical functions have been of great 
MPh theoretical as well as in experimental magnetism. A considerable amount of 
bhisstilldevoted to the c&ulation of further terms in known series or the evaluation 
ofc"letely new series. It seems that most attention has'been paid to Hamiltonians 
& a  model interaction (Ising, X Y and Heisenberg ; spin dimensionality D = 1,2 and 3 
Vctively), mainly on lattices with nearest-neighbour interactions only. In practice 
however, many magnetic compounds do not behave like such a model system and 
txperimental physicicists are confronted with a lack of data concerning the series for 
moregeneral Hamiltonians. This may imply interactions of different strength or a more 
Reral form of the exchange tensor. 

We wish to turn our attention to this last case and write the Hamiltonian in the axial 
h 

aith = L 
2 .  f i e  summation runs over all pairs of nearest neighbours and each pair is 

@unted once. 
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In order to calculate the series expansion for the logarithm of the panition function 

T de Neefond J P A M Humans 

with fl= I/kT, we employed the finite cluster method (Domb 1960, Rushbrooke 1% 
Rushbrooke ef al1974), for a set Of ratios J,/JII. 

insulators motivated us to see whether this same technique could be applied to themore 
general Hamiltonian 

(31 

n e  experimental interest of our laboratory in the magnetic behaviour of 

x'' = - 2 (J,S?S; +JJq + J,SfS;) + H 
( i j )  i 

for which the series would read 
i i - k  

It is obvious that the extra labour involved is considerable, partly due to the hi& 
number of yi{ but mainly due to the fact that T, (= Xi Sf) is no longer a good quantum 
number in (3). This reduces the symmetry of X (as compared to (1)) and results in much 
larger matrices that have to be handled. 

It was found however, that the coefficients in the series for the zero-field speak 
heat (or equivalently the #) for a Hamiltonian like (3) are related to the aio from tbe 
axial case (1). 

A unique correspondence between them holds up to a certain order in fl .  which 
depends on the type of lattice. 

2. Method of calculation 

The most powerful method of calculating the coefficients in a series expansion ofln(Z) 
for an S = 4 Hamiltonian like (1) is probably the finite cluster method, introduced by 
Domb (1960). In order to find the series for an infinite lattice with this technique. the 
series for a number of relatively small clusters of spins are calculated and combined ina 
suitable way. Details of the different steps in this process are clearly described elsewhere 
(see, for instance, Baker et al1967b, Rushbrooke er a1 1974) and tables that describe the 
way in which the clusters should be combined have been published by Baker et ~((19674.  
Here we wish to emphasize only one point, conceming the arithmetic. 

The coefficients in the series for any particular cluster are obtained from Tr (X'T!) 
for the corresponding Hamiltonian. When dealing with an isotropic interaction termr 
(JI = Jllb this is usually do?e through repeated multiplication of the matrix represents- 
tion of 31" on any suitable set of basis functions. For S = + the basis can be chosen Such 
that this matrix contains only integer numbers and computer calculations are 
errorless. In our case ofanisotropic exchange, Tr (H'T;) should be solved for a n u m b r  Of 
ratios J,/J,, . Although i t  is still possible to choose J J J , ,  as an integer, thereby 
a matrix that contains only integers also, we found this method too cumbersome and 
proceeded differently. 

Instead ofmatrix multiplications to obtain Tr (XiT!) ,  we calculated the eigenvaluesof 
2' and computed the traces from these. Since is a good quantum number, the@!* 
Values can be labelled according to the eigenvalues of T,  and no difficulties arise. llUs 
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inudug~ some rounding errors but on the other hand the computations are 
Sff UP time consuming. 
soldg in (2) for given J ,  and J II results in a series 

Itshaddb noted that in this expression the coefficients aij are not known as functions of 
Their numerical values are known only for certain combinations of the two 

F e t e s .  Since each coefficient aij (Jl, J i , )  in ( 5 )  can be expressed in a homogeneous 
~ p o ~ d  of degree i in J ,  and Jl l ,  

J+dJil. 

*finalcoefficients can be solved by comparing the numerical values of aii(J,, Jll) in 
(alorditferent sets of JI and Jll. As mentioned, the aij (.IL, 31,) are subject to rounding 
mr;and an averaging is therefore desirable. We solved (5)  for 14 different ratios JL/Jll 
&this averaging was accomplished by requiring the squares sum 

l 2  (7) Fij = ( c a~jJiJ:Jf~k-a, l (J , ,JI()  
i 

J I , J I I  k = O  

toreach a minimum for the af to be determined. The aLj, found in this way, are not 
morless but the minimum value of Fij can be used to indicate their reliability. Some of 
&#are known exactly from the series for model Hamiltonians (Ising, XY). These may 
be substituted beforehand. The known series coefficients for the Heisenberg model 
hnpose an additional condition of the coefficients a, namely that their sum is correct. 
Mer solution of (7) the difference between their sum and the correct sum is distributed 
mng the ai1 with a weight according to their respective uncertainties. In this way the 
*for the model Hamiltonians (Ising, X Y and Heisenberg) are correctly represented 
bu the general expression (2). 

Wewillnow turn to the possibility ofcalculating the series for the general Hamiltonian 
(3). Inorder to find the expressions for the coefficients bijJ,, J,, J,) in (4), we first define 
&Pbomial expression in accordance with (6) as 

i i - k  

Oaraimis toestablish a relation between yi{ and U;. Since bii(JL, Jil) = aij(J1, JII) 
bkmdilydone by the substitution J ,  = J ,  = J,, J ,  = Jll in (8) and comparing the 
Rsult with (6). This shows that for any i and j 

k 

For'andjfiXd, the number of unknowns on the right-hand side is qi + l)(i + 2), whereas 
Of coefficients on the left-hand side is just'i+ 1. In general it is thus not 

mbietodetermine the values for all yi{ for given i and j from the i different a:. How- 
N(r:'~n symmetries may be present and these are most helpful when j = 0 and '-'. In that case no external preferred direction is imposed on the Hamiltonian 
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and 
implies the relations 

It is obvious that this symmetry reduces the number of coefficients d? quite drat&, 
To show the effect on the calculation we will consider the Coefficients in fi3 in more ,jetail 
For the general Hamiltonian (3) we find, grouping different terms in accordance %G 
(1013 

b,,(J,, J,, J z )  = $",J; + J: + J:) + $ y ( J &  + J& + J z J ;  f J;Jy + J:Jz  + Js J,) 

Tde Neef and J P A M Hiimam 

is invariant under any permutation of J x ,  J, and J, .  For the coefficients 'fuo& 

io 
(4 

io 7;: = 7;; = 7j!rl = Yfi0-k = 7 ~ i - l  = Y i - [ k .  

+ r E J x J J :  (11) 

a30(J,, J , , )  = a : " ~ ;  + Z ~ ~ J ~ J , + ~ : ~ J ~ ~ J : + ~ : ~ J : .  

and for the axial case 

(121 

Substitution of J, = J ,  = J, and J z  = J , ,  in ( 1  1 )  and comparison of (1 1) and (12) 
leads to the set of equations (9), which read 

ai0 = 7;; 

%30 = 7 30 

a:' = 2yiy+y:y 

= 2 3 0  i o 0  + 2YE. 

1 -Yo1 

The three different y$' are thus uniquely determined as 

y:: = 
30 - 1 30 

Yo1 - $1 

30 - 30 30 
711 - a2 -a1 

and besides, it is clear that a relation must exist between the four aio. For higher terms 
t5e corresponding set of equations becomes still undetermined and no unique solution 
can be found. In fact, for i = 4 one would end up with five equations and six unknowns 
However, a number of the coefficients $. can be neglected since their value must be 
zero. In the above example for instance. $7 must vanish since in j13 the only 
with a non-vanshing trace are 

I_ 
- - and A. 

But the first gives rise to 7;: since any other combination would result in a vanishing 
trace, and the second graph contributes only to yi:. (This explains the predictedeun 
relation between the four aio.)  

A systematic examination of all graphs yields some general rules concerning 
indices i, k and I in 7;:. We may state quite generally that no graphs exist that contribute 
to Y;! with I odd. Other restrictions may be present that depend on the type of ]attig 
for which the series is calculated. For all open cubic lattices (no odd-numbered fin@) 
for instance, examination of the graphs shows that i, j and k should be all even Oral' 
odd. Conditions, imposed in this way on the coefficients, affect both the n u m b r  Of 
equations and the number of unknowns in (9). We did not study this problem i n p !  
detail for all lattices, but a first examination reveals that the set is still solvable to order! 
for any lattice. We conclude therefore that this method is rather generally applicable 
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&its use is primarily of experimental interest. For theoretical analysis of series, 
O ~ 7 i S q ~ i t e l ~ ~ .  On the open lattices, where solutions can be found to order PI1,  the 
@on is less severe. 

Agempts to apply the same method to the series of the susceptibility (yi2 kl) fail already 
#drP, due to the fact that X' is no longer invariant under all permutations of J,, J ,  
dJ:. 

High-temperature series for S = 4 with anisotropic exchange 

?gcsiesexpansion ofln (2) was calculated on four open lattices : the linear chain (one 
miond), square (two dimensional), simple cubic (three dimensional) and body- 

cubic (three dimensional). The polynomials representing the coefficients 
us, jY, 1:) and a,j(J,, J , , ) ( j  > 0) are expressed as integer ratios in table 1. The table is 
~ d h  sections, corresponding to the power of H in (2). Each section contains seven 
&L corresponding respectively to : the order of p, an identification of the non-zero 
&en& & or yi., a multiplication factor and the information for the four lattice 

For the terms in Ho the identification of the y$ is a set of three numbers listing the 
nrpectivepowers of J,, J ,  and J,. It should be remembered that, as in (1 l), permutation 
dttg J,, J, and Jz is implicit. Thus {1,1,3} for example corresponds to 

(5dYJ5 + J,J,3J, + J$l,J,) 

d{2?,2} toJ$@;. The other sections ofthe table compile information for the axially 
ymetric Hamiltonian (1). In that case no permutations are allowed and (2,4) for 
mple should thus be read as ( J t J I ) .  Each of the numbers in the last four columns 
W bemultiplied by the appropriate constant in the third column. As was mentioned, 
drmfficients are not free from rounding errors. The minimum squares sum resulting 
htheleast-squares fit (7) in the determination of the ct2,is used to estimate the accuracy 
dbenumbers. This is expressed by asterisks, superscripted to the numbers in the last 
kcolumns of the table. If one asterisk is attached, a deviation of -t- 5 is possible. For 
Bmterisks a maximum error of k 50 may be present. Care was taken to ensure the 
Qfmt result for Heisenberg interaction ( J ,  = J ,  = J,) (Rushbrooke et al 1974), for 
4 exchange ( J ,  = J ,  = 0) (Domb 1974) and for the X Y  model ( J ,  = J,, J ,  = 0) 
kts 1974) for terms in Ho : Lee (1971) for terms in H2. Previous results on the axial 
mkmhn were used as a check also. Especially the result of Obokata et al(1967) for 
ks"W)tibility of (1) on the linear chain, square and simple cubic lattices, and the work 
OiwW and Dalton (1972). These checks were made by comparing the series for the 
W%C heat in zero field : 

C = 1 i(i - l)aiojY 
i 2 2  

ator the susceptibility in zero field, 

(15) 

"Ute. Heisenberg Hamiltonian, the tables of Rushbrooke et  al (1974) offered the 
wltY ofa direct comparison for the expansion of In (2). 
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Nore added in pool. Very recently van Dongen el al (1975) obtained results fork 
series expansion (4), for the linear chain. Their technique is very similar to the mm 
described here, Actually they were abIe to find the 7;: from a:' and aio, known 
the exact solutions for the king and X Y  chain respectively. Our results are in 
with theirs. 
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